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We obtain explicit upper estimates in direct inequalities with respect to the usual
sup-norm distance for Bernstein-type operators. Our approach combines analytical
and probabilistic techniques based on representations of the operators in terms of
stochastic processes. We illustrate our results by considering some classical families
of operators, such as Weierstrass, Sza� sz, and Bernstein operators. � 2001 Academic
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1. INTRODUCTION

It is well known that, for many families L=(L$ , 0<$<$0) of positive
linear operators, the rate of convergence of L$ f to f, as $ � 0, in the
Lp -norm (1�p��) is characterized in terms of a suitable weighted
Ditzian�Totik modulus of smoothness of the function f under considera-
tion (cf. [6, 7, 13] and the references therein). Results of this kind are referred
to as direct and converse inequalities. In this paper, we combine analytical
and probabilistic techniques to give general pointwise estimates concerning
direct inequalities in the usual sup-norm for Bernstein-type operators.

We shall use the following notations. Let I be a closed real interval.
Denote by C(I ) the set of real continuous functions defined on I. Following
[6], a function . # C(I ) is called a weight function if .(x)>0, x # I 0, where
I0 stands for the interior set of I. Given a weight function ., we consider
the following Ditzian�Totik modulus of smoothness of f # C(I ),

|2
. ( f ; =)� :=sup [ |22

h.(x) f (x)|: 0�h�=, B(x, h.(x))�I], =�0,
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where B(x, h) denotes the closed ball of center x and radius h and

22
h f (x) :=f (x+h)&2 f (x)+ f (x&h), h�0, B(x, h)�I.

Let . be a weight function and let $0>0. We consider a family L :=
(L$ , 0<$<$0) of positive linear operators of the form

L$ f (x) :=Ef (Z$ (x)), x # I, 0<$<$0 , (1)

E being the mathematical expectation and (Z$ (x), x # I, 0<$<$0) a
family of I-valued random variables satisfying for all x # I and 0<$<$0

Z$ (x)=x+$.(x) Y$ (x), EY$ (x)=0, and

sup
0<$<$0

sup
x # I

EY 2
$ (x)<�. (2)

Many classical families of positive linear operators allow for this proba-
bilistic expression (cf. [1]). Finally, we denote by M(.) the set of functions
f # C(I ) satisfying L$ | f | (x)<�, x # I, 0<$<$0 , as well as |2

. ( f ; =)�

<�, =�0.
We shall be concerned with pointwise estimates of the type

|L$ f (x)& f (x)|�c$ (x) |2
. ( f ; $)� ,

x # I, 0<$<$0 , f # M(.), (3)

where c$ (x) may depend on $ and x, but not upon f. The inequality

sup
0<u�$

&Lu f &f &�C|2
. ( f ; $)� , 0<$<$0 , f # M(.), (4)

where & }& stands for the usual sup-norm and C is an absolute constant is
called a direct inequality.

Several authors have obtained estimates of the constants c$ (x) and C for
the ordinary second modulus of continuity, i.e., for .#1. For instance,
with regard to the Bernstein polynomials, Gonska [8] showed that 1�
C�3.25 and Pa$ lta$ nea [11] obtained C=1.094. Pointwise-type estimates
for this operator can be found in Gonska and Zhou [9] and Kacso� [10].

Although |2
. ( f ; } )� gives the right order of uniform convergence, the

authors do not know explicit estimates of the constants c$ (x) and C in
(3)�(4) with respect to a general weight function .. Under mild assump-
tions on .��close to those assumed in [5, 13]��we obtain general
pointwise estimates which are applied to some classical families of
operators (Section 3). If these assumptions are not fulfilled, we provide in
Section 4 a counterexample of a family of operators of the form (1)�(2) not
satisfying a direct inequality.
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Finally, unless otherwise specified, we fix from now on $>0 and write
L, Z(x), Y(x) and c(x) instead of L$ , Z$ (x), Y$ (x), and c$ (x), respectively.
Accordingly, we shall consider inequalities of the form

|Lf (x)& f (x)|�c(x) |2
. ( f ; $)� , x # I, f # M(.). (5)

2. TECHNICAL LEMMAS

In some classical examples, the weight function . vanishes at the finite
endpoints of I. This implies��in contraposition with the ordinary second
modulus��that we cannot compare |2

. ( f ; h)� for different values of h. To
solve this problem, denote by Hx :=[h�0 : B(x, h)�I], x # I0. If A�I,
we set m(A) :=inf[.(x): x # A]. For any x # I0 and h # Hx"[0], we define

K(x, h) :=inf {k=1, 2, ... :
h

k m \B \x,
k&1

k
h++

�$= (K(x, 0)=0).
(6)

Lemma 2.1. Let f # M(.), x # I0 and h # Hx . Then

|22
h f (x)|�K2 (x, h) |2

. ( f ; $)� .

Proof. Let h # Hx"[0] and k=1, 2, ... be fixed. Denote by ur=x&h+
rh�k, r=0, ..., 2k. Let ar=r, if r=1, ..., k&1 and ar=2k&r, if r=k, ...,
2k&1. Then

|22
h f (x)|= } :

2k&1

r=1

ar22
h�k f (ur)}�k2|2

. \f ;
h

k m \B \x,
k&1

k
h+++�

.

Since k is arbitrary, the conclusion follows from (6). K

Remark 2.1. Denote by WxX the ceiling of x, i.e., WxX :=inf[k # Z :
k�x]. It follows from (6) that for .#1, K(x, h)=Wh�$X and, therefore,
Lemma 2.1 extends the well-known inequality |2

1( f ; h)��Wh�$X2 |2
1 ( f; $)� .

Remark 2.2. Let x # I0 and h # Hx . Clearly, (6) implies that K(x, } ) is non-
decreasing and K(x, h)=1, whenever 0<h�$.(x). Also,

K(x, h)� � h
$m(B(x, h))| \1

0
=+�+ .
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Thus, K(x, h)<� if I=R or if h # H0
x . Otherwise, K(x, h) may not be finite.

For instance, K(x, x)=� if I=[0, �), .(x)=x and $<1.

Sufficient conditions ensuring the finiteness of K(x, } ) are given in the
following Lemma. To this end, let I=[0, �) or I=[0, 1]. Denote by d( } , } )
the usual euclidean distance and by Ic :=R"I. For any x # I0, we set

Jx :=[ y # I0 : d( y, Ic)�d(x, Ic)] and m(x) :=m(Jx). (7)

We shall assume that

(i) m( } ) is positive on I0 and the function

r(x) :=
d(x, Ic)
m(x)

, x # I0 (8)

satisfies the following: r(x) � 0, as x � 0, and r( } ) is non-decreasing on (0, �)
or on (0, 1�2], according to I=[0, �) or I=[0, 1].

Lemma 2.2. Let I=[0, �) or I=[0, 1], x # I0 and 0<h�d(x, Ic). If con-
dition (i) above is satisfied, then

K(x, h)�16�h
a|<� \ 1

+�
=0+ , (9)

where 6 stands for maximum and

a :=sup [z # I0 : 2z # I0, r(z)�$]. (10)

Proof. Let x # I0 and 0<h�d(x, Ic). By assumption (i), 0<a��. If
I=[0, �) and a=�, then 0<h�d(x, Ic)�$m(x)�$.(x) and, therefore,
K(x, h)=1, as follows from Remark 2.2. Otherwise, since B(x, (k&1)
h�k)�Jh�k , k=1, 2, ..., we have from (6) and (10)

K(x, h)�inf {k=1, 2, ... :
h�k

m(h�k)
�$==inf {k=1, 2, ...:

h
k

�a= .

This completes the proof of Lemma 2.2. K

As pointwise approximants of any function f # C(I), we consider the second
order Steklov means of f given by

Ph f (x) :=
1

4h2 |
h

&h
|

h

&h
f \x+

u+v
2 + du dv, x # I0, h # Hx"[0].

An immediate consequence of Lemma 2.1 is the following.
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Lemma 2.3. Let f # M(.), x # I0, and h # Hx"[0]. We have

(a) Ph f (x)=(1�h2) 22
hF(x), with F"(x)= f (x).

(b) |Ph f (x)& f (x)|�(1�2) K2(x, h) |2
. ( f; $)� .

(c) |(Ph f )" (x)|�(1�h2) K2 (x, h) |2
. ( f ; $)� .

3. DIRECT INEQUALITIES

Let J�I0 be a closed interval. If x # I"J, we denote by x* the endpoint of
J such that d(x, J)=d(x, x*), while if x # J, we set x*=x. We say that J is
a symmetrization subinterval of I if 2x*&x # J, for every x # I. We denote by
1A the indicator of the set A and use the convention d( } , <)=+�. The
direct inequalities are based on the following

Theorem 3.1. Let J be a symmetrization subinterval of I such that
m(J)>0. For any x # I and 0<h�d(J, Ic)7 $m(J), where 7 stands for mini-
mum, we have

|Lf(x)& f (x)|�(c1 (x)+c2 (x)+c3(x)) |2
.( f ; $)� , f # M(.),

where

c1 (x)=EK2(Z*(x), |Z(x)&Z*(x)|) 1[Z(x) � J]+K2 (x*, |x&x*|),

c2 (x)=1+P(Z(x) � J, Z*(x){x*) 1[x=x*]

+(P(Z(x) # J)+2P(Z(x) � J, Z*(x){x*)) 1[x{x*]

and

c3(x)=
1
h2 \1

2
E(Z(x)&x)2+(x&x*)2+E(Z*(x)&x*)2 1[Z(x) � J]+ .

Proof. Fix x # I and call Z=Z(x). Since h�d(J, Ic), we can write

f(Z)& f(x)=I+II+III,

where

I=f (Z)&2f (Z*)+ f (2Z*&Z)&( f(x)&2f (x*)+ f(2x*&x)),

II=(( f &Ph f )(Z*)&( f &Ph f )(x*))

+(( f &Ph f )(Z*)&( f &Ph f )(2Z*&Z))

&(( f &Ph f )(x*)&( f &Ph f )(2x*&x))
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and

III=(Ph f(Z*)&Ph f (x*))+(Ph f (Z*)&Ph f(2Z*&Z))

&(Ph f (x*)&Ph f(2x*&x)).

The constant c1 (x) is obtained taking expectations in I and applying
Lemma 2.1 (recall that K(Z*, 0)=0). On the other hand, since h�d(!, Ic) 7
$.(!), for any ! # J, we have from Remark 2.2

K(!, h)�1, ! # J. (11)

Therefore, the constant c2 (x) is obtained taking expectations in II and apply-
ing (11) and Lemma 2.3(b).

Finally, expanding III in a Taylor series around x* and taking into account
that EZ=x, Lemma 2.3(c) and (11), we have

|E(III)|�
1
h2 |2

.( f ; $)� \1
2

E(Z&x*)2 1[Z # J]

+E _(Z*&x*)2+
1
2

(2Z*&Z&x*)2& 1[Z � J]+
1
2

(x&x*)2+ .

The constant c3 (x) is obtained from this inequality, after observing that on the
event [Z � J], we have

(2Z*&Z&x*)2=4(Z*&x*)2&4(Z*&x*)(Z&x*)+(Z&x*)2

�(Z&x*)2,

and noting that E(Z&x*)2=E(Z&x)2+(x&x*)2, since EZ=x. The proof
of Theorem 3.1 is complete. K

Pointwise estimates of the form (5) are given in the following two results.

Corollary 3.1. Let I=R. If m(I)>0, then inequality (5) holds with

c(x)=1+
1
2

E \.(x) Y(x)
m(I) +

2

, x # I.

Proof. It is enough to choose in Theorem 3.1 J=I and h=$m(I), so that
Z*(x)=Z(x) and x*=x, for any x # I. K

To deal with the cases I=[0, �) or I=[0, 1], we shall assume that a, as
defined in (10), satisfies the following property:

(ii) a<� or a�1�3, according to I=[0, �) or I=[0, 1].
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Observe that under assumption (i) preceding Lemma 2.2, condition (ii) is
fulfilled for $<limx � � r(x) or $�r( 1

3), according to I=[0, �) or I=[0, 1].

Corollary 3.2. Let I=[0, �) or I=[0, 1] and let Jx be as in (7). If con-
ditions (i) and (ii) above are satisfied, then inequality (5) holds with

(a) If x � Ja , then

c(x)=3+
1
2

E \.(x) Y(x)
m(a) +

2

+\x&x*
a +

2

+\2+
(1&2a)2

a2 + P(Z(x) � Ja , Z*(x){x*).

(b) If x # Ja , then for any symmetrization subinterval Jb of I such that
x # Jb �Ja , we have

c(x)=1+
1
2

E \.(x) Y(x)
m(b) +

2

+E \1+�d(b, Ic)
a |

2

+\Z*(x)&x
$m(b) +

2

+ 1[Z(x) � Jb] .

Proof. (a) By condition (ii), Ja is a symmetrization subinterval of I.
Choose in Theorem 3.1 J=Ja and h=a=$m(a), so that |x&x*|�a and
|Z(x)&Z*(x)|�a. By Remark 2.2, c1 (x)=P(Z(x) � Ja)+1. On the other
hand, since x � Ja , x*{x and, therefore,

c2 (x)=1+P(Z(x) # Ja)+2P(Z(x) � Ja , Z*(x){x*).

Finally, to bound c3 (x), note that E(Z*(x)&x*)2 1[Z(x) � Ja] is positive only if
I=[0, 1], on the event [Z*(x)=1&x*]. Hence,

E(Z*(x)&x*)2 1[Z(x) � Ja]=(1&2a)2 P(Z(x) � Ja , Z*(x){x*),

thus completing the proof of part (a).

(b) Choose in Theorem 3.1 J=Jb and h=$m(b)�d(b, Ic), as follows
from assumption (i). In this case, x*=x. Therefore, by Lemma 2.2

c1(x)��d(b, Ic)
a |

2

P(Z(x) � Jb) and c2 (x)�1+P(Z(x) � Jb).

Since the bound for c3 (x) is trivial, this completes the proof of
Corollary 3.2. K

To illustrate the preceding results, we consider the following examples.
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Example 3.1. The Weierstrass operator. For any fixed _>0, let
(W_

t , t>0) be the family of operators defined as

W_
t f (x) :=Ef \x+_

W(t)
t +

=
- t

_ - 2? |
�

&�
f(x+%) e&t%2�2_2 d%, x # R,

where (W(t), t�0) is the standard Brownian motion. Observe that W1
t is the

classical Weierstrass operator. Since $=1�- t and .(x)#1, we immediately
obtain from Corollary 3.1

Corollary 3.3. Let f # M(.), with .(x)=1, x # R. Then,

&W_
t f &f &�\1+

_2

2 + |2
. \f;

1

- t+�
, t>0.

The constant in Corollary 3.3 can also be obtained by applying [11,
Theorem 2.1]. On the other hand, using the symmetry of each random
variable W(t) and Remark 2.1, we obtain the estimate

1
2

E \1+_
|W(t)|

- t +
2

=
1
2

+_�2
?

+
_2

2
.

This was pointed out in [3, p. 137] for the Gauss�Weierstrass integral (_=
- 2). Note that Corollary 3.3 provides better constants if _�- ?�(2 - 2).

Example 3.2. The Sza� sz operator. Let St be the operator defined as

St f (x) :=Ef \N(tx)
t += :

�

k=0

f \k
t+ e&tx (tx)k

k!
, x�0, t>0,

where (N( y), y�0) is the standard Poisson process. We shall need the follow-
ing exponential bound, the proof of which follows along the lines of that in
[12, p. 52]

P(N( y)�;y)�exp(&g(;) y), y�0, 0�;�1, (12)

where g( } ) is the convex function given by

g(;) :=1&;+; log ;, 0�;�1. (13)
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Corollary 3.4. Let f # M(.), with .(x)=- x, x�0. Then,

&St f &f &�4|2
. \f;

1

- t+�
, t>0.

Proof. First, we can write for any x>0 and t>0

N(tx)
t

=x+�x
t

Yt (x), Yt (x) :=
N(tx)&tx

- tx
, and

EY2
t (x)=1. (14)

We therefore have $=1�- t, .(x)=m(x)=- x and a=1�t. Fix x>0 and
t>0 and denote by y :=tx. We distinguish the following cases:

Case y<1. Corollary 3.2(a) and (14) yield

c( y)=3+ 1
2y+( y&1)2�4.

Case y�1. We apply (14) and Corollary 3.2 (b) by choosing b=;x, with
1�y�;�1, to obtain

c( y)=1+
1

2;
+\1+W;yX2+

(1&;)2

;
y+ P(N( y)<;y). (15)

According to 1� y<5 or 5� y<10, we choose ;=i�y, i=1, 2 in (15), thus
obtaining the bound

ci ( y) :=1+
y
2i

+\1+i2+
( y&i)2

i + e&y :
i&1

k=0

yk�c(5&)=3.62128,

as follows from the convexity of each ci( } ) on its respective domain of defini-
tion. Finally, for y�10, we choose ;=1�4 in (15) and apply (12) to obtain
the bound

c( y)�3+\1+\y
4

+1+
2

+
9y
4 + e&g(1�4) y�c(10)=3.63273,

the last inequality because the function h( y) :=ype&:y ( p>0, :>0) is
decreasing for y�p�:. The proof of Corollary 3.4 is complete. K

Example 3.3. Bernstein polynomials. For n=1, 2, ..., let Bn be the
operator defined as

Bn f (x) :=Ef \Sn (x)
n += :

n

k=0

f \k
n+\

n
k+ xk (1&x)n&k, 0�x�1,

237UPPER ESTIMATES



where

Sn (x)= :
n

k=0

1[0�Uk�x] , 0�x�1, n=1, 2, ...

(Uk , k=1, 2, ...) being a sequence of independent random variables uniformly
distributed on [0, 1]. As in (12), we have for n=1, 2, ...,

P(Sn (x)�;nx)�exp(&g(;) nx), 0�x�1, 0�;�1, (16)

where g(;) is defined in (13).

Corollary 3.5. Let f # M(.), with .(x)=- x(1&x), x # [0, 1].
Then,

&Bn f &f &�4|2
. \f ;

1

- n+�
, n=1, 2, ... .

Proof. Since the random variables Sn (1&x) and n&Sn (x), have the
same law, we can restrict our attention to x # (0, 1�2]. On the other hand,
we can write for 0<x<1 and n=1, 2, ...

Sn (x)
n

=x+�x(1&x)
n

Yn (x), Yn (x) :=
Sn (x)&nx

- nx(1&x)
,

EY 2
n (x)=1. (17)

Thus, we have $=1�- n, .(x)=m(x)=- x(1&x), and a=1�(n+1). As
B1 f is linear and interpolates f at 0 and 1, we have from [2] that

&B1 f &f &�|2
1 ( f ; 1

2)��|2
. ( f ; 1)� .

Denote by y :=nx. We distinguish the following cases:

Case 0< y<n�(n+1). From Corollary 3.2(a) and (17), we obtain

cn ( y)=3+
(n+1)2 y(n& y)

2n3 +\(n+1) y
n

&1+
2

+(2+(n&1)2) \y
n+

n

�4,

since cn ( } ) is convex and attains its maximum at y=0.
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Case n�(n+1)� y�n�2. We apply (17) and Corollary 3.2(b) by choosing
b=;x, with n�((n+1) y)�;�1, to obtain

cn ( y)=1+
n& y

2;(n&;y)
+\1+�(n+1) ;y

n |
2

+
(1&;)2 ny
;(n&;y) +

_P \Sn \y
n+<;y++\1+�(n+1) ;y

n |
2

+
(n& y&;y)2 n

(n&;y) ;y +
_P \Sn \1&

y
n+<;y+ . (18)

If 2�n�12 or if n�(n+1)� y<1, it can be checked that cn ( y)<4, by
choosing ;=n�((n+1) y) in (18). Therefore, we can assume in what
follows that n�13.

If 1� y<5, we set ;=1�y in (18). Since Sn (1& y
n)�Sn( 1

2), we have the
bound

cn ( y)�An ( y) :=1+
y
2

+\5+
n

n&1
( y&1)2+ e&y

+\5+
n(n&2)2

n&1 + 1
2n�A13 (5)=3.66709,

where we have used the monotonicity of A. ( y) and the convexity of
A13 ( } ).

If 5� y<10 7 n�2, we set ;=2�y in (18), thus obtaining

cn ( y)�Bn ( y) :=1+
y
4

+\10+
n

2(n&2)
( y&2)2+ (1+2y) e&y

+\10+
n(n&7)2

2(n&2) +
n+1

2n �B13 (10)=3.59903,

as follows from the convexity of B13 ( } ).
Finally, if 10� y�n�2, we set ;=1�4 in (18) and use the exponential

bound (16) to obtain

cn ( y)�Cn ( y) :=1+8
n& y
4n& y

+\1+\(n+1) y
4n

+1+
2

+
18y

7 + e&g(1�4) y

+\1+\n+1
8

+1+
2

+
(4n&5y)2 n
(4n& y) y + e&g(1�4) n�2�Cn (10)�4,

where we have used the monotonicity of Cn ( } ) for n�13. This completes
the proof of Corollary 3.5. K
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4. CONCLUDING REMARKS

As shown in Lemma 2.2, assumption (i) guarantees the finiteness of
K(x, } ), which is a basic ingredient in obtaining direct inequalities. Without
this assumption, K(x, } ) may not be finite (recall Remark 2.2), but in such
a case, a direct inequality is not always valid, not even a pointwise estimate
as that in (5). To see this, we give the following

Example 4.1. Let I=[0, �) and let . be a non-decreasing weight
function, so that .( } )#m( } ). Suppose that r( } ), as defined in (8), is non-
decreasing, and that r(x) � r>0, as x � 0.

For any t>r&2, we consider the operator Lt on [0, �) defined as

Lt f (x) :=Ef (Zt (x)), x�0,

where the random variable Zt (x) takes on the values 0, x and 2x, with
probabilities

pt (x) :=P(Zt (x)=0)=P(Zt (x)=2x)

=
1
2

(1&P(Zt (x)=x))=
1

2tr2 (x)
.

The preceding family of operators L :=(Lt , t>r&2) has the form given by
(1)�(2), with $=1�- t, .(x) as above and EY 2

E t(x)=1. Fix t>r&2 and
x>0. For any =>0, the function f= ( y) :=log( y 6 =) satisfies

|2
. \f= ;

1

- t+�
�log

r - t+1

r - t&1
, (19)

since the first order increments of f= ( y) are bounded by the first order
increments of log y. On the other hand,

|Lt f= (x)& f= (x)|=|log =+log 2&log x| pt (x), 0<=<x. (20)

= being arbitrary, (19) and (20) prove that inequality (5) does not hold.
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